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Abstract. Radio frequency identification (RFID) tags are expected to
play an important role in the future of ubiquitous computing. By extend-
ing the deployment of computing devices to every facet of our lives will
open up communication infrastructures to new forms of attack. As such,
the inclusion of security is vital in the development of next-generation
wireless and ubiquitous devices. In this paper, a low-cost SHA-1 hash
function architecture is described that can be used to provide data in-
tegrity and authentication in RFID tags. When implemented on 130 nm
CMOS the design utilises 5527 gates and consumes 2.32 µW of power.
To the author’s knowledge, the proposed architecture is the smallest and
most power-efficient hash function design reported in the literature to
date.

1 Introduction

Dramatic advances in digital wireless technology over the past two decades have
led to many exciting developments including the rapid growth of mobile and
ubiquitous computing. In the future, through the use of mobile applications
and devices embedded in the surrounding environment, users will be offered
transparent computing and communication services at all times and in all places.
Applications of wireless mobile and ubiquitous computing, such as smart homes,
smart automobiles, and remote payment have already begun to emerge. Security
is an important factor that must be taken into consideration if the uptake of this
new computing paradigm is to be successful. The capability of digital devices
to autonomously interact brings with it significant security and privacy risks for
the end user [1, 2].

Radio frequency identification (RFID) tags will play a key role in the future
development of ubiquitous computing. The current deployment of low-cost RFID
tags in applications such as access control, inventory control, luggage tracking
and product traceability has already gained much research and media atten-
tion. However, the fact that RFID systems involve contactless communication,
are non line-of-sight and that tags broadcast information, raises significant se-
curity concerns including violation of privacy, consumer tracking and product
forgery. The draft recommendation on RFID privacy and security published by



the European Commission in February 2008 stated that RFID applications need
to operate in a secure manner and that research needs to be carried out into
high-performance and low-cost security solutions for RFID devices [3].

RFID tags can be active, i.e. self-powered, or passive, where they are powered
by the electromagnetic field of a reader. The cheaper devices will typically be
of the second kind and in this research an RFID system is assumed to consist
of a more powerful reader and a set of low-cost tags. The reader consists of a
transmitter and receiver, control functionality and a coupling element to interact
with the tag. An RFID tag comprises a coupling element with an antenna, and
a chip that gives the tag some limited functionality [4]. It is clear that device
costs will be a significant factor in the development of ubiquitous computing,
just as for current RFID deployment today. Devices must be cheap enough for
an application to be financially viable and so while the universal deployment of
RFID tags is acknowledged to bring security and privacy threats, any security
countermeasures should incur minimal additional cost. Due to a tag’s limited re-
sources, the addition of security measures and techniques poses very interesting
challenges for the research community. It is important to consider the cost of in-
cluding security architectures in tags and three factors which need to be analysed
are peak power consumption, computation time and silicon requirements. In cur-
rent debates about RFID deployment, estimates vary on the space that might be
available in the more restricted devices. The measure of gate-equivalents (GE)
allows a technically-neutral estimate of the physical space required and within
the cryptographic community there is an oft-quoted consensus that out of 1000
– 10,000 GE on a restricted device, around 200 – 3000 GE might be available for
security [5, 6]. If Moore’s Law [7] is applied, then it may be possible to expect
around 10,000 GE to be available for security features at a similar price in four
to five years.

Hash functions can be used to provide data integrity and, in conjunction
with digital signature algorithms and message authentication codes, to provide
authentication. A security level of 80 bits is often deemed adequate for RFID tag
applications. This was taken as the security level requirement in the eSTREAM
project [8] in the selection of stream cipher candidates suitable for low-resource
hardware implementation. Therefore, a hash function with an output ≥ 160
bits is required in order to provide RFID tag security. Hence, a low-cost SHA-
1 architecture, which has a 160-bit hash output, is proposed in this research.
Weaknesses have been discovered in the SHA-1 hash function, which show that
only 269 operations are required in order to find a collision [9], which is much less
than the 280 operations required using a brute force attack. However, the security
requirements of certain RFID applications may not require collision resistance.

Previous research has been carried out on low-cost SHA-1 hash function ar-
chitectures for ubiquitous and RFID applications. Feldhofer and Rechberger [10]
presented low-power architectures of the SHA-1 and SHA-256 hash functions
for RFID protocols. Their SHA-1 design required 8120 gates and consumed
35.24 µW (10.68 µA) of power. A low-power SHA-1 design described by Kaps
and Sunar [11] targeted ubiquitous computing. However, it was not a full im-



plementation as they assumed that values required in the algorithm’s message
schedule were stored in external memory. Satoh and Inoue’s low-area SHA-1 ar-
chitecture [12] required 7971 gates, but power measurements were not provided.
Finally, Choi et al. [13] outlined a low-power SHA-1 implementation for RFID
systems that utilised 10,641 gates and consumed 19.5 µW of power. However,
the area of all these previous designs is still too large for current RFID tag de-
ployment. Low-cost designs of digital signature algorithms that incorporate the
SHA-1 hash function have also been investigated for RFID applications. This re-
search has involved elliptic curve cryptography (ECC) based architectures such
as the work by Fürbass and Wolkerstorfer [14] on a low-cost Elliptic Curve Dig-
ital Signature Algorithm (ECDSA) design over GF(P 192) and the research by
Schroeppel et al. [15] describing a hardware architecture of the Elliptic Curve
Optimal El Gamal Signature scheme over GF(2178). Many new security protocols
being proposed for RFID tags also require hash functions [16–18]. Therefore, it
is evident that research is required into the design of new low-cost hash function
algorithms or into developing highly optimised architectures of existing hash
functions, which is the focus of this work.

All of the previous research into low-cost SHA-1 designs have employed a
32-bit architecture since the SHA-1 algorithm comprises inherently 32-bit oper-
ations. In order to achieve a highly optimised SHA-1 design, an 8-bit hardware
architecture is proposed in this research. A hardware architecture is consid-
ered since hardware offers real-time security, lower power and is inherently more
tamper-proof than software. These advantages are vital if security is to be pro-
vided in next-generation wireless applications so that end-users are provided with
effective security with little or no overhead cost. Also, the performance analysis
of hardware-based security designs is essential to ascertain the true suitability
and practicality of such schemes in resource constrained RFID applications.

The SHA-1 hash function is outlined in section 2 of this paper. The proposed
8-bit low-cost SHA-1 hardware architecture is described in detail in section 3. A
performance analysis and comparison with previous work is provided in section
4 and conclusions are discussed in section 5.

2 SHA-1 Hash Function

The Secure Hash Algorithm (SHA-1) was proposed by the US National Institute
of Standards and Technology (NIST) in 1995 [20]. It operates on a message
of length < 264 in 512-bit blocks and cycles through 80 iterations of a hash
computation to produce a 160-bit message digest. The algorithm comprises three
principle steps: Message Pre-processing, the Message Schedule and the Hash
Computation.

The message pre-processing stage involves padding the message to a length
≡ 448 mod 512, appending the message length as a 64-bit number and parsing the
padded message into N 512-bit data blocks. The message schedule involves the
generation of 80 32-bit values, Wt , which are utilised in each hash computation
iteration, and calculated as,



Wt =
{

Messaget 0 ≤ t ≤ 15
ROTLEFT1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) 16 ≤ t ≤ 79 (1)

where ROTLEFTn(word) is a circular rotation of a word by n positions to
the left.

Finally, the hash computation involves the update of 5 variables, a, b, c, d
and e, every iteration according to equation 2, where the initial values for these
variables, as given in equation 3, are provided in the original SHA-1 algorithm
specification [20]. The function, Ft(b, c, d), is described in equation 4 and the
32-bit constant values, Kt are given in equation 5. After 80 iterations the 160-bit
output is added to the initial a to e values, and the result initialises the a to
e values for the next data block to be processed. After all N data blocks have
been processed, the final output forms the 160-bit message digest. An outline of
the hash computation is shown in Figure 1.

T = ROTLEFT5(a) + Ft(b, c, d) + e + Kt + Wt

e = d
d = c
c = ROTLEFT30(b)
b = a
a = T

(2)

A = 67452301
B = efcdab89
C = 98badcfe
D = 10325476
E = c3d2e1f0

(3)

Ft(b, c, d) =





(b AND c) OR (b̄ AND d) 0 ≤ t ≤ 19
b⊕ c⊕ d 20 ≤ t ≤ 39

(b AND c) OR (b AND d) OR (c AND d) 40 ≤ t ≤ 59
b⊕ c⊕ d 60 ≤ t ≤ 79

(4)

Kt = 5a827999 0 ≤ t ≤ 19
Kt = 6ed9eba1 20 ≤ t ≤ 39
Kt = 8f1bbcdc 40 ≤ t ≤ 59
Kt = ca62c1d6 60 ≤ t ≤ 79

(5)

3 Low-Cost 8-bit SHA-1 Hardware Architecture

The SHA-1 algorithm is intrinsically designed to be implemented on a 32-bit
platform - the logical function, Ft , and rotate functions operate on 32-bit words
and the addition is performed modulo 232. As such, all implementations of SHA-1
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Fig. 1. Outline of Hash Computation in SHA-1

to date have been based on a 32-bit architecture. Since the goal of this research is
to design a low-cost SHA-1 architecture, an 8-bit design is considered, where all
of the 32-bit oriented operations in the algorithm are modified such that they can
be performed in 8-bit blocks. The pre-processing step is assumed to be carried
out in software. In our 8-bit SHA-1 design, the message blocks, Messaget , are
loaded into the design in 64 x 8-bit blocks and the message schedule is designed
using a 64 x 8-bit shift register array, as shown in Figure 2. As such, the original
message schedule can be rewritten as:

Wt =
{

Messaget 0 ≤ t ≤ 63
ROTLEFT1(Wt−12 ⊕Wt−32 ⊕Wt−56 ⊕Wt−64) 64 ≤ t ≤ 319 (6)

The SHA-1 message schedule involves 32-bit XOR and rotate functions. The
32-bit XOR functions can be easily broken down into 8-bit XORs carried out
over 4 clock cycles to provide the same overall result. However, when performing
the inherently 32-bit rotate function, ROTLEFT1(x ), in 8-bit blocks, the rotated
bit must be taken into account every 4th data block as the newly generated Wt

value is stored back into the register array. As such, some additional control logic
is required. The overall 8-bit SHA-1 message schedule is outlined in Figure 2.
An example illustrating how the rotation of a 32-bit data block, x , is carried out
in 8-bit blocks is given in Figure 3, where,

x = 11100001 01100010 01100011 01100100
x3 x2 x1 x0

In cycle 1, the seven least significant bits (LSBs) of x0 are concatenated with
the output of register A (see Figure 2 – initialised to ′0′) and input into register
W63 . The most significant bit (MSB) of x0 is input into register A. In cycle 2 the
seven LSBs of x1 are concatenated with the output of register A (now contains
MSB of x0 ) and input into W63 . The MSB of x1 is then input into register A.
The process is similar in cycle 3 for x3 . The procedure differs in cycle 4 in that
now the MSB of x4 is not input into register A but instead forms the LSB of x0



Rotate
Control
Logic

 

W63 W62 W61 W60 W59

Mt Wt

W52 W32… ...… ... W8… ... … ... W1 W0
7

1

1

8

8

8

7
1

A

Fig. 2. 8-bit SHA-1 Message Schedule

Fig. 3. ROTLEFT1 of a 32-bit Data Block carried out in 8-bit blocks

as it is input into register W60 . Thus, after 4 cycles the result that would have
been achieved from the 32-bit rotate function is now obtained using 8-bit data
blocks.

In the 8-bit hash computation architecture, the 32-bit variables a to e are
considered as 8-bit data blocks, a0 , a1 , a2 , a3 to e0 , e1 , e2 , e3 . Therefore, the
architecture is designed using a 20 x 8-bit shift register array, as illustrated in
Figure 4. Within this step, the operations that need to be carefully considered
when employing an 8-bit architecture are the calculation of c, which involves
an inherently 32-bit rotate function, ROTLEFT30(b), and the calculation of a,
which consists of a rotate function, ROTLEFT5(a), a logic function and addi-
tion modulo 232. The ROTLEFT30(b) function can be taken to be equivalent to
a ROTRIGHT2(b) function. The function takes 4 cycles to complete when per-
formed in 8-bit blocks and the two rotated bits are taken into account every 4th
cycle. In cycle 1, the two LSBs of b3 are input into registers and stored for 3
cycles, as shown in Figure 4. For cycles 1, 2 and 3 the two LSBs of b2 are con-
catenated with the six MSBs of b3 to form the input into c0 . On the 4th cycle



the last byte of the rotated result is determined by concatenating the output of
the registers with the six MSBs of b3 .
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Fig. 4. 8-bit Hash Computation Architecture

Since the logic function, Ft(b, c, d), comprises XOR, AND, OR and NOT
operations, reducing it to operate on 8-bit blocks over 4 clock cycles will have
no affect on achieving the equivalent 32-bit result. The ROTLEFT5(a) function
required in the calculation of a is also carried out over 4 cycles. The design of this
function does not require any additional registers as the values used to perform
the rotation can be read from existing registers. In cycle 1, the first byte of the
rotated result can be formed by concatenating the three LSBs of a3 with the five
MSBs of a0 . Then in cycles 2, 3 and 4 the remaining bytes are determined by
concatenating the three LSBs of a3 with the five MSBs of b0 , since the contents
of register a3 will pass to register b0 every cycle. When performing the addition
required in the calculation of a in 8-bit blocks, an appropriate carry has to be
included to ensure that the result matches that obtained from an equivalent
32-bit addition.

The 8-bit hash computation design will take 320 cycles to complete. The
result must be added to the initial a to e values to form the new a to e values
utilised in processing the next data block. As the initial 8-bit a0 , a1 , a2 , a3 to
e0 , e1 , e2 , e3 values are input into the shift register array they are also stored
in a memory (a register array) so that they are available for the final addition.
In the final addition the output of register e3 is added to the 8-bit register
array output and once again, a carry is used to ensure that the final result
corresponds to what would be obtained from the corresponding 32-bit addition.
Since the output of the message schedule is not available for 4 cycles and the
160-bit hash result is output in 8-bit data blocks over 20 cycles, the overall 8-bit
SHA-1 architecture requires 344 clock cycles to complete.



4 Performance Evaluation

The 8-bit SHA-1 architecture was implemented using the Faraday UMC 180 nm
(L180 GII) and UMC 130 nm (L130 LL) CMOS libraries. It was tested using
Modelsim, synthesised using Synopsys Physical Compiler Version 2006.06
and its power consumption obtained from Synopsys PrimeTime PX Version
2007.06. The power consumption was calculated as:

Pmax = Pave + 2 ∗ StdDev

for a set of randomly generated input values. A breakdown of the area utilised by
each component of the proposed 8-bit low-cost SHA-1 design is given in Table 1.
The overall performance results of the 8-bit design and previously proposed
low-cost 32-bit SHA-1 implementations are provided in Table 2. The SHA-1
architecture by Satoh and Inoue [12] comprises four adders for the additions:
e + Ft(b, c, d) + Wt + Kt + ROTLEFT5 (a). In order to reduce the overall design
area they reuse the adder that is used to compute e + Ft(b, c, d) to carry out
the addition between the final a to e values and the initial a to e values over
5 cycles. They perform one SHA-1 round in 1 clock cycle and therefore, their
design requires 85 clock cycles to complete. No power measurements are provided
for their proposed architecture. The design by Kaps and Sunar [11] is not a full
implementation of SHA-1 as they use external memory to store the Wt values
generated in the message schedule, which would not be feasible if employed
within RFID tags. The registers used to store the Wt values in the proposed
8-bit SHA-1 design implemented on 130 nm technology account for 2560 gates
and 46% of the overall design. In Kaps and Sunar’s implementation of this
operation, they read the four 32-bit values, Wt−3 ,Wt−8 ,Wt−14 and Wt−16 ,
from the external memory and write the result, Wt , back into memory in each
round. Therefore, their design requires 5 cycles to compute any one SHA-1 round.
Since they also perform the final addition over 5 cycles, the total number of
clock cycles for their low-cost SHA-1 design is 405. The SHA-1 architecture by
Feldhofer and Rechberger [10] is designed such as only one 32-bit word is clocked
in any one clock cycle. Their design requires 1724 clock cycles to complete.
Choi et al . [13] use one adder to perform the hash computation operation in
their SHA-1 architecture and as such, one SHA-1 round function is achieved
in 4 clock cycles. They utilise a further 10 clock cycles, possibly to perform
initialisation and the final addition. Overall, they require 330 clock cycles to
complete a full SHA-1 operation. As described in Section 3, the 8-bit SHA-1
architecture outlined in this paper takes 344 clock cycles to complete, where one
SHA-1 round requires 4 clock cycles since operations are carried out in 8-bit
data blocks.

It is very difficult to compare power consumption across different technolo-
gies. For example, the power consumption associated with the Faraday UMC
180 nm and the UMC 130 nm libraries is 29 nW/MHz/gate and 6 nW/MHz/gate
respectively. However, whatever the target technology it is important that the
power consumption of the design meets the limitations imposed by RFID tags.



Table 1. Area Utilised by Components in 8-bit SHA-1 Architecture

Component Area (0.13 µm) Area (0.18 µm)
(gates) (gates)

Hash Computation 2751 3160

Message Schedule 2655 2831

Control logic 121 131

Total 5527 6122

According to Feldhofer et al . [21], the current consumption of a security archi-
tecture for implementation on RFID tags must not exceed 15 µA. For 1.3 V and
1.8 V CMOS technologies, this is equivalent to 18 µW and 27 µW respectively.
The proposed 8-bit SHA-1 design meets these power constraints comfortably.
Gate count can be used to provide an approximate comparison of area across
different technologies (although it can vary by ≈ 10% – note the difference in
gate count for the proposed design in 130 nm and 180 nm technologies). In RFID
tags the silicon area requirement significantly impacts the cost and the cost per
mm2 of silicon is estimated at 4 cent [22]. Therefore, it is vital that the silicon
area overhead resulting from the inclusion of security on low-cost tags is kept to a
minimum. From Table 2, it is clear that the proposed 8-bit SHA-1 architecture is
the smallest full SHA-1 design reported in the literature and is within close reach
of current RFID tag deployment. This is achieved by using an 8-bit data-path
which reduces the 32-bit XOR, AND, NOT and OR functions to equivalent 8-bit
functions with no logic overhead and the 32-bit addition modulo 232 and rotate
operations to equivalent 8-bit operations with minimal control logic overhead.
Using this design methodology the overall saving in area is approximately 1200
gates. In relation to timing, a tag must respond to a reader’s request within 32 µs
in accordance with the ISO/IEC 18000 standard [23]. An interleaved challenge-
response protocol could be used such as that proposed by Feldhofer et al . [21],
in which the response time is 18 ms. This corresponds to 1800 clock cycles when
operating with a clock frequency of 100 kHz. The proposed design also satisfies
this requirement.

5 Conclusions

Hash functions currently play an important role in providing data security to
communication applications and they will continue to be required in the pro-
vision of security in next-generation wireless and ubiquitous devices. Although
the SHA-1 algorithm is considered weak in comparison to other hash functions,
it will remain suitable for some RFID applications in which collision resistance
may not be essential. In this paper, a low-cost SHA-1 architecture that is based
on an 8-bit datapath is presented which results in a significant reduction in area
(≈ 1200 gates) over previous work. Overall, the architecture is within close reach



Table 2. Performance Comparison of Low-cost SHA-1 Hardware Implementations

Design Area Power Consumpt. Timing
(gates) (µW@100 kHz) (clk cycles)

This work: 8-bit SHA-1 5527 2.32 344
(0.13 µm/1.2 V )

This work: 8-bit SHA-1 6122 13.8 344
(0.18 µm/1.8 V )

Feldhofer & Rechberger [10] 8120 35.24 1274
(0.35 µm/3.3 V )

Kaps & Sunar [11] 4276 26.73 405
(0.13 µm/1.2 V ) partial design @500 kHz

Choi et al . [13] 10641 19.5 330
(0.25 µm)

Satoh & Inoue [12] 7971 - 85
(0.13 µm)

of current RFID tag deployment and will certainly be feasible for providing secu-
rity in tags in the very near future. Future work will investigate a low-cost design
of the more secure SHA-256 hash function using the 8-bit design methodology
described in this paper.
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