

Low-cost SHA-1 Hash Function Architecture for RFID Tags

Dr. Máire O'Neill (nee McLoone)

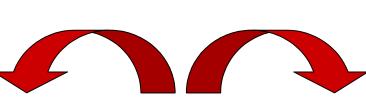
Invest 💦

Northern

Ireland

EU Programme for Peace and Reconciliation

Employment


and Learning

- Importance of Security in RFID applications
- Need for research into low-cost hash functions
- SHA-1 Hash Function
- Low-cost 8-bit SHA-1 hardware architecture
- Performance Evaluation
- Suitability for RFID Tags
- Conclusions

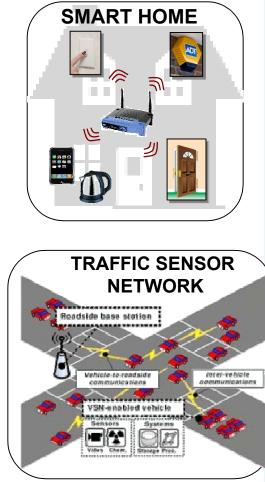
ECIT | Importance of Security in RFID



CULIMATE 551 CU

www.ce.org

Data Security is <u>VITAL</u> for emerging Mobile & Ubiquitous Applications


ECIT | Importance of Security in RFID

- RFID tags will play a key role in future of mobile and ubiquitous computing
- Feb 2008 EC Draft Recommendation on RFID Privacy and Security stated that:

"RFID applications need to operate in a secure manner" ...

and

"Security and privacy by design is important in the early stage of development of RFID applications"

ECIT | Hash Functions

- Hash functions provide data integrity
- When used with digital signature algorithms & MACs they can provide authentication
- A security level of 80-bits deemed adequate for RFID tags
- Hash function with output ≥ 160-bits needed to provide RFID tag security
- Propose to use SHA-1 hash function
- Although weaknesses discovered in SHA-1 only 2⁶⁹ operations required to find a collision (Wang *et al.*,05) – RFID tag security may not require collision resistance

ECIT | Need for low-cost Hash Functions

• Previous research into low-cost SHA-1 designs:

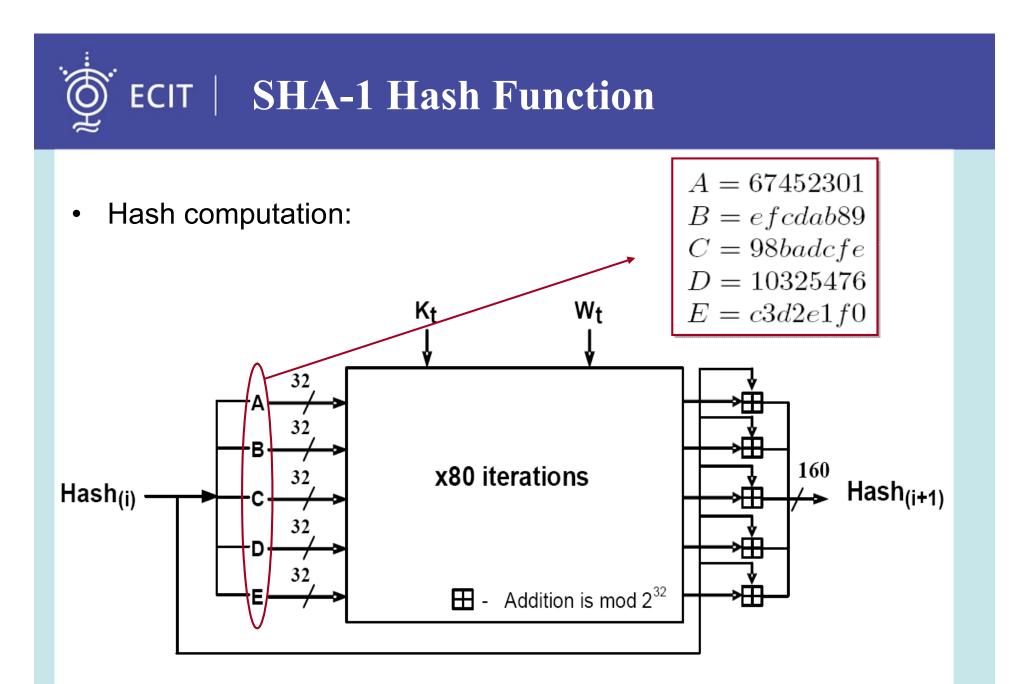
Design	Area (gates)	Power
Feldhofer & Rechberger	8120	35.24 µW @ 100kHz
Kaps & Sunar (<i>partial design</i>)	4276	26.73 µW @ 500kHz
Satoh & Inoue	7971	None provided
Choi <i>et al.</i>	10641	19.5 µW @ 100kHz

 Area of these designs still too large to provide security in current RFID tags

ECIT | Need for low-cost Hash Functions

- Low-cost designs of digital signature algorithms that incorporate SHA-1 have also been investigated:
 eg. ECDSA, EC Optimal El Gamal Signature scheme
- Many new security protocols proposed for RFID applications include hash functions
- Therefore, research is required into the design of:
 - New low-cost hash function algorithms;

-Highly optimised architectures of existing hash functions


ECIT | SHA-1 Hash Function

- SHA-1 was proposed by the US NIST in 1995
- Operates on a message of length <2⁶⁴ in 512-bit blocks
- Produces a 160-bit message digest
- Comprises 3 steps:
 - Message pre-processing
 - Message schedule
 - Hash computation

ECIT | SHA-1 Hash Function

- Message pre-processing:
 - Padding the message to a length \equiv 448 mod 512;
 - Appending the message length as a 64-bit number;
 - Parsing the padded message into *N* 512-bit data blocks
- Message schedule:
 - Generation of 80 32-bit values, W_t :

$$W_t = \begin{cases} Message_t & 0 \le t \le 15\\ ROT_{LEFT_1}(W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16}) & 16 \le t \le 79 \end{cases}$$

ECIT | SHA-1 Hash Function

• Hash computation:

$$T = ROT_{LEFT_{5}}(a) + F_{t}(b, c, d) + e + K_{t} + W_{t}$$

$$e = d$$

$$d = c$$

$$c = ROT_{LEFT_{30}}(b)$$

$$b = a$$

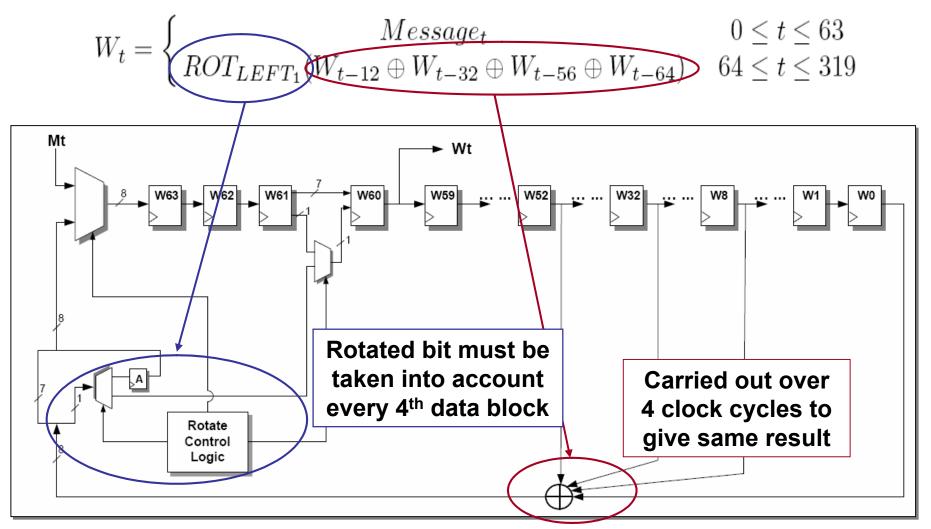
$$a = T$$

$$K_{t} = 5a827999 \quad 0 \le t \le 19$$

$$K_{t} = 6ed9eba1 \quad 20 \le t \le 39$$

$$K_{t} = 8f1bbcdc \quad 40 \le t \le 59$$

$$K_{t} = ca62c1d6 \quad 60 \le t \le 79$$

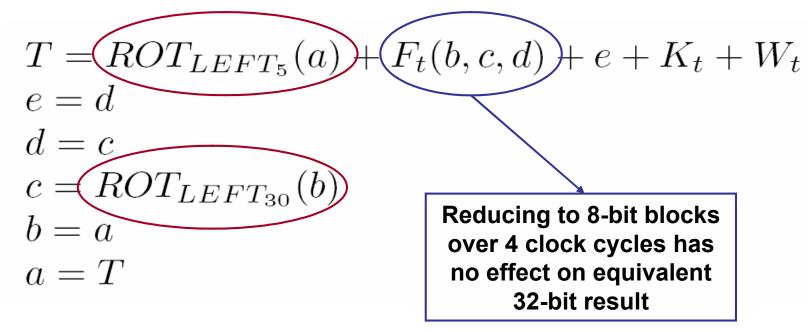

$$F_t(b,c,d) = \begin{cases} (b \text{ AND } c) \text{ OR } (\bar{b} \text{ AND } d) & 0 \le t \le 19 \\ b \oplus c \oplus d & 20 \le t \le 39 \\ (b \text{ AND } c) \text{ OR } (b \text{ AND } d) \text{ OR } (c \text{ AND } d) & 40 \le t \le 59 \\ b \oplus c \oplus d & 60 \le t \le 79 \end{cases}$$

ECIT | Low-cost 8-bit SHA-1 Architecture

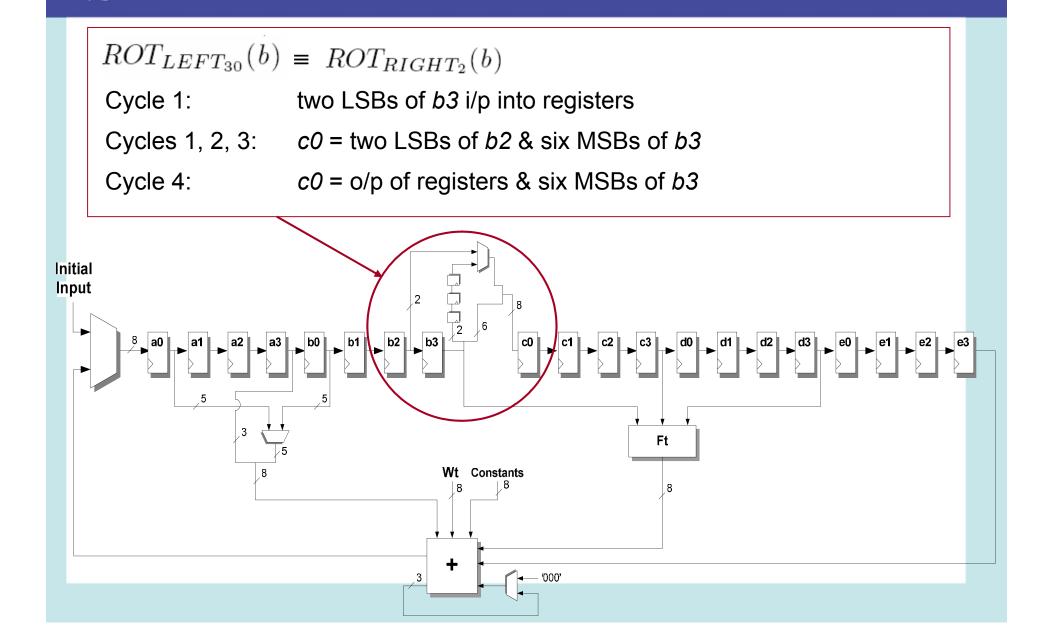
- SHA-1 algorithm intrinsically designed to be implemented on a 32-bit platform:
 - Logical function, F_t , and rotate functions operate on 32-bit words
 - Addition is performed modulo 2³²
- All previous research into low-cost SHA-1 designs have employed a 32-bit architecture
- Proposal is to design an 8-bit low-cost SHA-1 architecture => modify the 32-bit oriented operations to be performed in 8-bit blocks

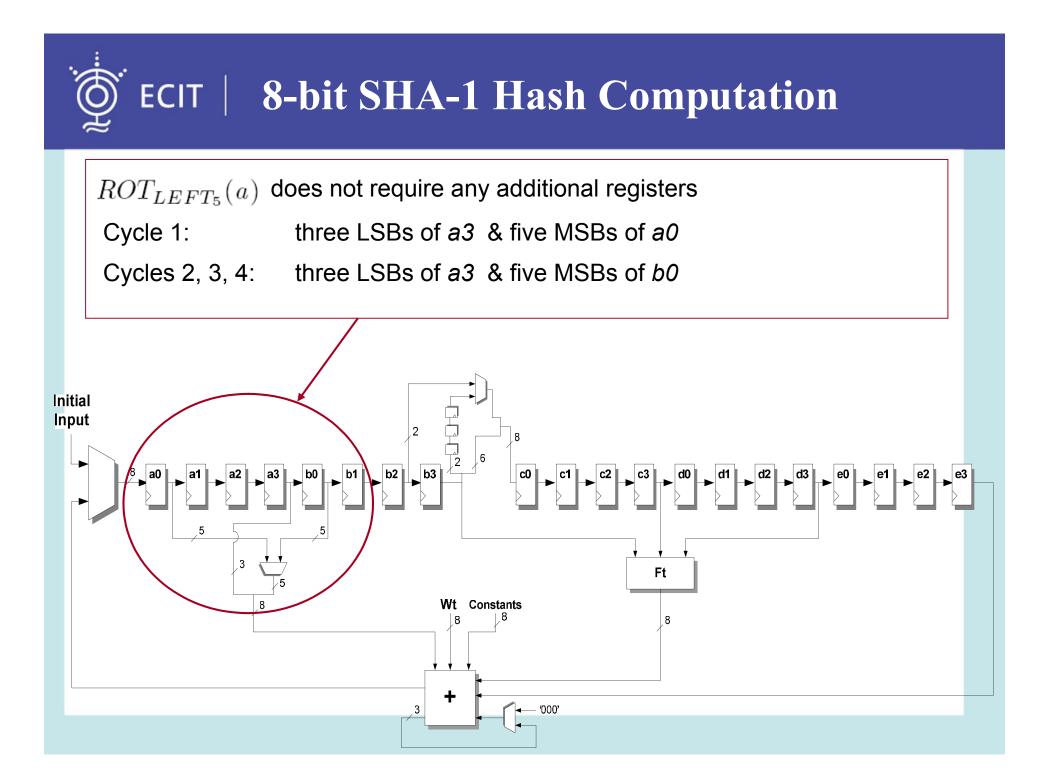
ECIT | 8-bit SHA-1 Message Schedule

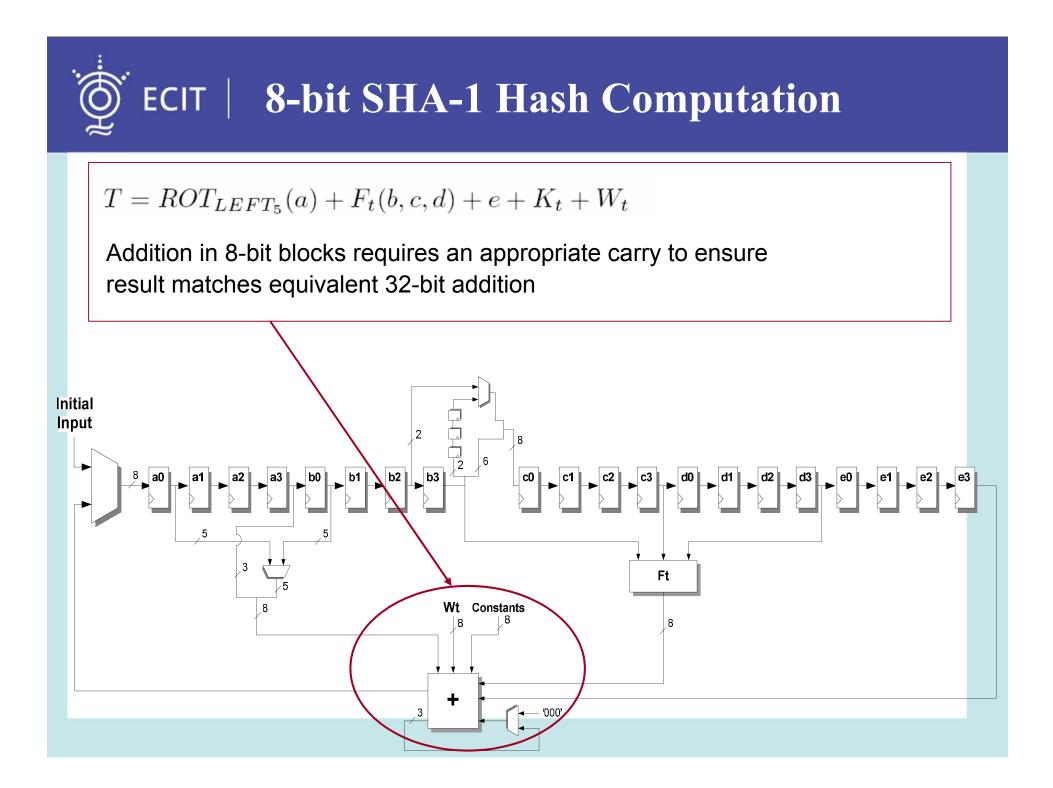
• For 8-bit design, SHA-1 Message Schedule can be rewritten as:


ECIT | 8-bit SHA-1 Message Schedule

32-bit input, x = 11100001 01100010 01100011 01100100 $ROT_{left1}(x) = 11000010$ 11000100 11000110 11001001 x3 x2 x1 x0


Cycle	Input O Register A	W63	W62	W61	<i>W60/</i> Output
1	<i>x</i> 0:0110 0100	1100 100 <u>0</u>	1100 1000	1100 1000	1100 100 <u>1</u>
2	x1:0110 0011	1100 0110	1100 0110	1100 0110	1100 0110
3	x2:0110 0010	1100 0100	1100 0100	1100 0100	1100 0100
4	x3: 1110 0001	1100 0010	1100 0010	1100 0010	1100 0010


D ECIT | **8-bit SHA-1 Hash Computation**


- 32-bit *a* to *e* considered as 8-bit *a0, a1, a2, a3* to *e0, e1, e2, e3*
- Hash computation:

ECIT | 8-bit SHA-1 Hash Computation

ECIT | **8-bit SHA-1 Final Addition**

- To perform final addition:
 - As initial 8-bit a0, a1, a2, a3 to e0, e1, e2, e3 are input into shift register array they are also stored in a register array memory
 - After 80 iterations, o/p of register e3 added to 8-bit register array output (carry used to ensure correct result)
- Cycle count:
 - 8-bit hash computation takes 320 clock cycles
 - Output of message schedule not available for 4 cycles
 - 160-bit hash result is output in 8-bit blocks over 20 cycles
- => Overall 8-bit SHA-1 architecture takes 344 clock cycles

ECIT | **Performance Evaluation**

- Implementation: Faraday UMC 180nm & 130nm CMOS libs
- Synthesised: Synopsys Physical Compiler
- Power consumption: Synopsys PrimeTime PX
- Power consumption calculated as:

 $P_{max} = P_{ave} + 2 * StdDev$

for a set of randomly generated input values

ECIT | **Performance Evaluation**

Area utilised by 8-bit SHA-1 Architecture

Component	Area 0.13 µm (gates)	Area 0.18 μm (gates)
Hash computation	2751	3160
Message schedule	2655	2831
Control logic	121	131
Total	5527	6122

Note: Area can vary by $\approx 10\%$ across different technologies

ECIT | **Performance Evaluation**

Comparison with previous research

Design	Area (gates)	Power Cons (uW) @100 kHz	Timing (cycles)
This work: 8-bit SHA-1 (0.13um/1.2V)	5527	2.32	344
This work: 8-bit SHA-1 (0.18um/1.8V)	6122	13.6	344
Feldhofer & Rechberger (0.35um/3.3V)	8120	35.24	1274
Kaps and Sunar (0.13um/1.2V)	4276 (partial design)	26.73 @500 kHz	405
Choi <i>et al.</i> (0.25um)	10641	19.5	330
Satoh & Inoue (0.13um)	7971	None provided	85

ECIT | Suitability for RFID Tags

• RFID Tag Limitations:

Area	Power		Timing
≈ 3000 gates	18 μW (<i>0.13μm/1.2V</i>)	27 μW (<i>0.18μm/1.8V</i>)	1800 clock cycles (<i>interleaved protocol</i>)

- Proposed 8-bit SHA-1 design meets power & timing & is within reach of area limitations
- In RFID tags, silicon area significantly impacts cost
 => security design area overhead <u>must</u> be kept to minimum
- Proposed architecture is *smallest* full SHA-1 design to date
- 8-bit design methodology gives overall area saving of 1200 gates

- Hash functions play important role in providing data security
- Will continue to be required in future ubiquitous applications
- Although SHA-1 considered weak in comparison to other hash functions, may remain suitable for some RFID applications
- Proposed a low-cost SHA-1 design based on 8-bit data path
 - 32-bit XOR, AND, NOT & OR \rightarrow 8-bit functions: no logic overhead
 - − 32-bit addition modulo 2^{32} & rotate functions → 8-bit functions: minimal control logic overhead
- Results in smallest SHA-1 design reported to date
- Meets RFID tag power and timing limitations & is within reach of area requirement