Analysing the Molva and Di Pietro Private RFID Authentication Scheme

Mate Soos

July 7, 2008

Table of Contents

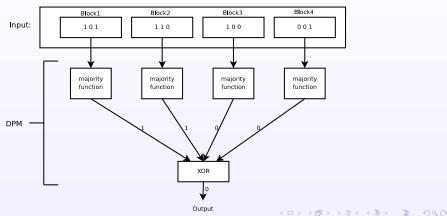
- 1 The Molva Di Pietro scheme
 - Private identification
 - Tag authentication
 - Reader authentication
- 2 Problems with the identification
 - Key- and pair-equivalences
 - Tautologies
 - Speed
 - Finding $k_{i,j}$
- 3 Design flaws

Outline

- 1 The Molva Di Pietro scheme
 - Private identification
 - Tag authentication
 - Reader authentication
- 2 Problems with the identification
 - Key- and pair-equivalences
 - Tautologies
 - Speed
 - Finding $k_{i,j}$
- 3 Design flaws

Protocol

The protocol can be divided into three phases:


- Private identification
- Tag authentication
- 3 Reader authentication

Some specifics:

- There are n tags $\mathcal{T}_1 \dots \mathcal{T}_n$ in the system
- lacksquare Each tag has a unique l-bit long key k_i
- lacksquare Each reader \mathcal{R}_j has an ID ID_j
- Reader-specific key of a tag: $k_{i,j} = h(k_i||ID_j||k_i)$, where h is a hash function
- ID of a tag is its reader-specific key

Uses the function $DPM(x) = \bigoplus_{i=0}^{l/3} M(x[3i], x[3i+1], x[3i+2])$, where M is the majority function:

Steps of the identification:

lacksquare \mathcal{R}_j sends ID_j to the tag

- **1** \mathcal{R}_j sends ID_j to the tag
- 2 \mathcal{T}_i computes $k_{i,j} = h(k_i||ID_j||k_i)$

- **1** \mathcal{R}_j sends ID_j to the tag
- 2 \mathcal{T}_i computes $k_{i,j} = h(k_i||ID_j||k_i)$
- **3** T_i generates l-bit nonces $r_1 \dots r_q$:

- **1** \mathcal{R}_j sends ID_j to the tag
- 2 T_i computes $k_{i,j} = h(k_i||ID_j||k_i)$
- **3** T_i generates l-bit nonces $r_1 \dots r_q$:

- **1** \mathcal{R}_j sends ID_j to the tag
- 2 \mathcal{T}_i computes $k_{i,j} = h(k_i||ID_j||k_i)$
- **3** T_i generates l-bit nonces $r_1 \dots r_q$:

 - $V[p] = DPM(r_p)$

- \blacksquare \mathcal{R}_j sends ID_j to the tag
- 2 T_i computes $k_{i,j} = h(k_i||ID_j||k_i)$
- **3** T_i generates l-bit nonces $r_1 \dots r_q$:

 - $V[p] = DPM(r_p)$
 - lacksquare sends the $(\alpha_p,V[p])$ pairs

Steps of the identification:

- **1** \mathcal{R}_j sends ID_j to the tag
- 2 \mathcal{T}_i computes $k_{i,j} = h(k_i||ID_j||k_i)$
- **3** T_i generates l-bit nonces $r_1 \dots r_q$:

 - $V[p] = DPM(r_p)$
 - lacksquare sends the $(\alpha_p,V[p])$ pairs
- **4** \mathcal{R}_j computes $DPM(\alpha_p \oplus k_{i,j})$ for all keys $k_{i,j}$ it possesses and checks it against V[p]. This is called the *Lookup Process*

q is selected such that it is highly improbable that the Lookup Process fails

Tag authentication

Tag authentication is a simple challenge-response:

11 \mathcal{R}_j sends a nonce n_j to the tag

Tag authentication

Tag authentication is a simple challenge-response:

- lacksquare \mathcal{R}_j sends a nonce n_j to the tag
- 2 \mathcal{T}_i computes and sends $\omega = h(k_{i,j}||n_j||r_1||k_{i,j})$ to the reader

Tag authentication

Tag authentication is a simple challenge-response:

- **11** \mathcal{R}_j sends a nonce n_j to the tag
- 2 \mathcal{T}_i computes and sends $\omega = h(k_{i,j}||n_j||r_1||k_{i,j})$ to the reader
- 3 \mathcal{R}_j computes $r_1=lpha_1\oplus k_{i,j}$ and checks ω against $h(k_{i,j}||n_j||r_1||k_{i,j})$

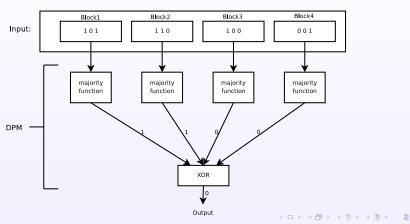
Reader authentication

Reader authentication is also a simple challenge-response:

1 \mathcal{R}_j computes $r_1=lpha_1\oplus k_{i,j}$ and sends $h(k_{i,j}||r_1||k_{i,j})$ to the tag

Reader authentication

Reader authentication is also a simple challenge-response:


- **1** \mathcal{R}_j computes $r_1=lpha_1\oplus k_{i,j}$ and sends $h(k_{i,j}||r_1||k_{i,j})$ to the tag
- 2 \mathcal{T}_i computes $h(k_{i,j}||r_1||k_{i,j})$ and checks it against the received hash. If they match, the reader is authenticated

Outline

- 1 The Molva Di Pietro scheme
 - Private identification
 - Tag authentication
 - Reader authentication
- 2 Problems with the identification
 - Key- and pair-equivalences
 - Tautologies
 - Speed
 - Finding $k_{i,j}$
- 3 Design flaws

If an even number of key blocks are inverted, the resulting key will be indistinguishable by the reader from the original key

So there are key-equivalence groups in the key space

- So there are key-equivalence groups in the key space
- lacksquare Each key-equivalence group contains $2^{l/3-1}$ keys

- So there are key-equivalence groups in the key space
- Each key-equivalence group contains $2^{l/3-1}$ keys
- In a similar manner, there are pair-equivalences

- So there are key-equivalence groups in the key space
- lacktriangle Each key-equivalence group contains $2^{l/3-1}$ keys
- In a similar manner, there are pair-equivalences
- Key- and pair-equivalences cause a big headache for the Lookup Process

■ An α_p -V[p] pair essentially give (somewhat obscure) information about the key of the tag

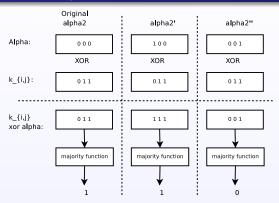
- An α_p -V[p] pair essentially give (somewhat obscure) information about the key of the tag
- Naturally, there is only so much different information that is possible to give

- An α_p -V[p] pair essentially give (somewhat obscure) information about the key of the tag
- Naturally, there is only so much different information that is possible to give
- So, there is a chance to give the same information twice

- An α_p -V[p] pair essentially give (somewhat obscure) information about the key of the tag
- Naturally, there is only so much different information that is possible to give
- So, there is a chance to give the same information twice
- Tautology is a set of x pairs that give the same information as x-1 pairs

- An α_p -V[p] pair essentially give (somewhat obscure) information about the key of the tag
- Naturally, there is only so much different information that is possible to give
- So, there is a chance to give the same information twice
- Tautology is a set of x pairs that give the same information as x-1 pairs
- Tautologies are also possible and they cause further problems for the Lookup Process

Speed problems


Average time and RAM required by the Lookup Process to find one tag on a Xeon E5345@2.33GHz with all optimisations other than assembly-level coding:

Number of tags	10^{6}	10^{7}	10^{8}
Time (s)	0.1	1.1	12
Memory (MB)	9.6	96	965

If an attacker inverts one bit of a block in α_2 such that output of the majority function is not inverted, the Lookup Process will still find the key $k_{i,j}$

- If an attacker inverts one bit of a block in α_2 such that output of the majority function is not inverted, the Lookup Process will still find the key $k_{i,j}$
- If the Lookup Process finds the correct key, the authentication will go through, since only α_1 is authenticated

- If an attacker inverts one bit of a block in α_2 such that output of the majority function is not inverted, the Lookup Process will still find the key $k_{i,j}$
- If the Lookup Process finds the correct key, the authentication will go through, since only α_1 is authenticated
- $lue{}$ So, by inverting one bit of a block in $lpha_2$ and checking the result of the authentication, the attacker can learn something very specific about that block


There are only two bit-combinations for which:

- 1 inverting the fist bit does not change the majority
- 2 inverting the last bit changes the majority

These are: 011 and 100

 Each MiM authentication attack gives 1 bit of block-specific information

- Each MiM authentication attack gives 1 bit of block-specific information
- After $2/3 \cdot l 1$ MiM attacks the attacker breaks the key to the key-equivalence level

- Each MiM authentication attack gives 1 bit of block-specific information
- After $2/3 \cdot l 1$ MiM attacks the attacker breaks the key to the key-equivalence level
- At this point, the tag is no longer private

- Each MiM authentication attack gives 1 bit of block-specific information
- After $2/3 \cdot l 1$ MiM attacks the attacker breaks the key to the key-equivalence level
- At this point, the tag is no longer private
- The attacker needs to brute-force the remaining $1/3 \cdot l + 1$ bits of the key using the authentication data

- Each MiM authentication attack gives 1 bit of block-specific information
- After $2/3 \cdot l 1$ MiM attacks the attacker breaks the key to the key-equivalence level
- At this point, the tag is no longer private
- The attacker needs to brute-force the remaining $1/3 \cdot l + 1$ bits of the key using the authentication data
- lacktriangle Therefore, for l=99 the authentication can be broken easily

- Each MiM authentication attack gives 1 bit of block-specific information
- \blacksquare After $2/3 \cdot l 1$ MiM attacks the attacker breaks the key to the key-equivalence level
- At this point, the tag is no longer private
- The attacker needs to brute-force the remaining $1/3 \cdot l + 1$ bits of the key using the authentication data
- lacksquare Therefore, for l=99 the authentication can be broken easily
- For larger *l*-s, privacy is still lost and the scheme behaves as an authentication scheme that has a keyspace of 1/3rd+1 of available key-bits

Outline

- 1 The Molva Di Pietro scheme
 - Private identification
 - Tag authentication
 - Reader authentication
- 2 Problems with the identification
 - Key- and pair-equivalences
 - Tautologies
 - Speed
 - Finding $k_{i,j}$
- 3 Design flaws

 Identification and authentication boundaries should have been clearly defined

- Identification and authentication boundaries should have been clearly defined
- Identification and authentication keys should have been generated differently

- Identification and authentication boundaries should have been clearly defined
- Identification and authentication keys should have been generated differently
- Given that the identification was not cryptographically secured, the integrity of the data exchanged during identification should have been authenticated during authentication

- Identification and authentication boundaries should have been clearly defined
- Identification and authentication keys should have been generated differently
- Given that the identification was not cryptographically secured, the integrity of the data exchanged during identification should have been authenticated during authentication
- lacktriangle The choice of the DPM function was not clearly motivated and its design was not analysed in a separate paragraph

Thank you for your time

Any questions?

