Data Synchronization in Privacy-Preserving RFID Authentication Schemes

Sébastien CANARD and <u>Iwen COISEL</u>

Orange Labs R&D - Caen - France

RFIDSec 08 - 10th July 2008

Outline

- 1 General Context
- 2 A synchronization problem
- 3 A New Modelization
- 4 The C² Scheme

Outline

- 1 General Context
- 2 A synchronization problem
 - 3 A New Modelization
- 4 The C² Scheme

System

Correctness

Correct: a legitimate tag is always accepted by a reader.

Strong Correctness

Strong Correct: a legitimate tag is always accepted by a reader, even if an adversary interacts with the system.

Strong Correctness

Strong Correct: a legitimate tag is always accepted by a reader, even if an adversary interacts with the system.

Strong Correctness

Strong Correct: a legitimate tag is always accepted by a reader, even if an adversary interacts with the system.

Soundness

Sound: an adversary should not be accepted as an uncorrupted tag by a reader.

Privacy - Anonymity

Anonymous: a tag is anonymous for everyone except the reader.

Privacy - Anonymity

Who is this tag ???

Anonymous: a tag is anonymous for everyone except the reader.

Privacy - Untraceability

Untraceable: an adversary is not able to link different authentications of the same tag.

Privacy - Forward-Privacy

Forward-private: an adversary which obtains the secret data of a given tag is not able to recognize previous authentications of this tag.

Outline

- 1 General Context
- 2 A synchronization problem
- 3 A New Modelization
- 4 The C² Scheme

OSK Scheme

Ohkubo, Suzuki and Kinoshita in 2003.

- Correct
- Sound
- Private

OSK Scheme

Ohkubo, Suzuki and Kinoshita in 2003.

Search ID:

$$K_{ID_i}$$
 \downarrow
 $H_1(K_{ID_i})$

OSK Scheme

Ohkubo, Suzuki and Kinoshita in 2003.

Search *ID*:
$$\begin{array}{cccc}
K_{ID_i} & \xrightarrow{H_2} & K_{ID_i}^{(+1)} & \cdots & \xrightarrow{H_2} & K_{ID_i}^{(+j)} \\
\downarrow & & \downarrow & \downarrow \\
H_1(K_{ID_i}) & & H_1(K_{ID_i}^{(+1)}) & & H_1(K_{ID_i}^{(+j)})
\end{array}$$

Attacks against the OSK Scheme

- An adversary can send as many requests as he wants to a tag, which
 consequently updates its key. Even if it takes some time, the reader
 is always able to resynchronize both keys.
- An adversary can answer to a request from the reader by sending a random value.
 - ⇒ the search procedure "will never end".

Solutions:

- OSK_m: the search procedure stops if no match is found after m updates of each key.
- OSK-AO: the database is constructed differently (using rainbow table) inducing a faster search procedure.

Problem: these protocols are Desynchronizable . (= a valid tag can be rejected by a reader)

Outline

- 1 General Context
- 2 A synchronization problem
- 3 A New Modelization
- 4 The C² Scheme

The Desynchronization Value (D_R, D_T) :

- D_R : maximum number of times that an adversary can update the key stored in DB without updating the one stored in the tag.
- D_T : maximum number of times that an adversary can update the key stored in a tag without updating the one stored in DB.

Example:

OSK, OSK_m and OSK-AO:

- the reader cannot be desynchronized $\Rightarrow D_{\mathcal{R}} = 0$.
- a tag can be desynchronized indefinitely $\Rightarrow D_T = \infty$.

Formally:

 During the strong correctness experiment, A interacts with the system and then chooses a legitimate tag ID

$$RK_{ID} = K_{ID}^{j}$$
 and $TK_{ID} = K_{ID}^{i}$

- At the end of the experiment, we define both intermediary values:
 - $D_{\mathcal{R}...A} = i i$
 - \blacksquare $D_{\mathcal{T},\mathcal{A}} = i j$

Definition

For a given RFID authentication scheme, the desynchronization value of a scheme is the couple $(D_{\mathcal{R}},D_{\mathcal{T}})$ with $D_{\mathcal{R}}=Sup_{\mathcal{A}}(D_{\mathcal{R},\mathcal{A}})$ and $D_{\mathcal{T}}=Sup_{\mathcal{A}}(D_{\mathcal{T},\mathcal{A}})$. The scheme is said $(D_{\mathcal{R}},D_{\mathcal{T}})$ -desynchronizable .

The Resynchronization Value (R_R, R_T) :

- R_R: maximum number of times that a key stored in DB can be desynchronized while the corresponding tag is still accepted by the reader.
- \blacksquare R_T : maximum number of times that a tag can be desynchronized while it is still accepted by the reader.

Example:

OSK:

- a tag can be resynchronized indefinitely $\Rightarrow R_T = \infty$,
- the reader can not be desynchronized and so, no mechanism to resynchronize it is needed $\Rightarrow R_{\mathcal{R}} = 0$.

$OSK_m/OSK-AO$:

• a tag can be resynchronized only m times $\Rightarrow R_T = m$,

Formally:

- We initialize a counter C = 1;
- We force the tag (resp. the reader) to update its secret key;
- An authentication protocol between the tag and the reader is launched;
- If the reader accepts the tag, we restart this procedure by incrementing C, else the resynchronization value is equal to C-1.

Definition

For a given RFID authentication scheme, if $D_{\mathcal{R}} \leq R_{\mathcal{R}}$ and $D_{\mathcal{T}} \leq R_{\mathcal{T}}$, the scheme is said *synchronizable*. Else, the scheme is said *desynchronizable*.

For OSK_m and OSK-AO, as $D_T > R_T$, it is desynchronizable.

Efficiency of the Search Procedure: for a given scheme, we compute the number of operations (per tag) performed by the reader to accept/reject a tag in the worst case.

Examples:

OSK:

On reception of a random value, the reader updates "indefinitely" all stored values without finding a match.

OSK_m:

• On reception of a random value, the reader updates m times all stored values without finding a match, inducing 2m+1 computations of hash function per tag.

OSK-AO:

• On reception of a random value, the reader has to compute the end of each possible chain of the rainbow table and compares them with those stored in the database, inducing $2(t-1)^2/n$ operations per tag.

Results in this model

Protocol	Des.	Res.	Search	Security
OSK	$(\infty,0)$	$(\infty,0)$	∞	OK
OSK _m	$(\infty,0)$	(m, 0)	2m + 1	OK
OSK-AO	$(\infty,0)$	(m-1,0)	$\frac{2(t-1)^2}{n}$	OK
Dimitriou	(0,1)	(0,1)	2	Traceable ¹
O-FRAP/O-FRAKE	(0,1)	(0,1)	2	No Forward-Privacy ²

No scheme presents all the requested properties.

¹ This paper

² K. Ouafi and R. C.-W. Phan, Traceable Privacy of Recent Provably-Secure RFID Protocols. In ACNS 2008, volume 5037 of LNCS, pages 479-489, 2008.

Outline

- 1 General Context
- 2 A synchronization problem
- 3 A New Modelization
- 4 The C² Scheme

Our New Scheme: The C² Scheme

$\mathcal R$		\mathcal{T}_{ID}
$N_R \in_R [0, 2^s[$	$request, N_R \longrightarrow$	
	$\underset{\leftarrow}{N_T, H_1(K_{ID} N_R N_T)}$	$N_T \in_R [0, 2^s[$
Searchs ID	$\xrightarrow{H_1(H_2(K_{ID}) N_R N_T)}$	
		Checks the message validity
	$H_3(K_{ID})$	$K_{ID}:=H_2(K_{ID})$
$K_{ID} := H_2(K_{ID})$		

Security Properties - Soundness

Security Properties - Privacy

Desynchronization Property

$$D_{\mathcal{R}}=0$$
 and $D_{\mathcal{T}}=1$

Resynchronization Property

 $R_{\mathcal{R}} = 0$ and $R_{\mathcal{T}} = 1$. The scheme is synchronizable

Search Procedure Efficiency

$$\mathcal{R}$$
 ... $N_T, r = H_1(K_{ID}||N_R||N_T)$

Searchs ID:

- $\forall i \in [1, n]$ do $H_1(K_{ID_i}^R || N_R || N_T) \stackrel{?}{=} r$
- if there is no match $\forall i \in [1, n]$ do

$$\tilde{K}_{ID_i}^R := H_2(K_{ID_i}^R)$$
 $H_1(\tilde{K}_{ID_i}^R ||N_R||N_T) \stackrel{?}{=} r$

The search procedure works in 3 operations in the worst case

Conclusion

Our contributions:

- We present new security properties to compare efficiency of RFID protocols.
- We study related work in this new model.
- We present a new privacy preserving authentication protocol with good desynchronization value at the price of some additional computations.

Open Problems:

- Show that at least one desynchronization, of the tag or the reader, is unavoidable when the protocol uses a key-update mechanism.
- Find a search procedure independent of the number of tags of the system.