

RUB

July 10, 2013

Timo Kasper, Alexander Kühn, David Oswald, Christian Zenger, Christof Paar Chair for Embedded Security (EMSEC) hg EMSEC

HGI, Ruhr-Universität Bochum, Germany

9th Workshop on RFID Security, Graz, Austria

Desfire

mifare

oyste

NFC

Contactless Smartcards (and NFC)

- defined in ISO/IEC 14443 standard
- Iarge scale applications:
 - access control systems
 - electronic passports
 - payment systems
 - ticketing / public transport
- Near Field Communication (NFC) is compatible to ISO/IEC 14443

The infrastructure (cards, readers, ...) is out there

Chip in front

Symbol for

Mensacard

RUB

DAWT0342

Motivation

Goals of the Project

- on-line booking application
- correctly identify the customer (billing, ...)
- transfer booked rights to phone
- access booked NFC objects with phone (including scenarios *without* permanent Internet)
- enable alternatives based on contactless cards
- proof-of-concept implementation (!)

Ingredients

- 1. NFC-smartphone with Internet access (UMTS, GSM, ...) here: BlackBerry Bold 9900
- 2. Contactless card with e-ID function here: new German electronic identity card (nPA)
- 3. NFC-enabled object(s)

here: red car with NFC interface

RUB

Phase 1: Booking (NFC phone acts as RFID reader)

- use e-ID card to prove customer's identity to service provider (PACE with PIN and EAC)
- credential is generated and *securely* transferred to the phone

RUB

Phase 2: Execute Booked Rights (NFC phone emulates Mifare DESfire)

- car acts as NFC reader, phone emulates Mifare DESfire card
- secure channel: 3DES-based mutual authentication scheme
- car obtains and checks credential
- if credential is valid, access is given

Thank you! Questions?

timo.kasper@rub.de

RUHR-UNIVERSITÄT BOCHUM

Chair for Embedded Security (Prof. Christof Paar)

www.emsec.rub.de

RUHR-UNIVERSITÄT BOCHUM

OK, some more details

RUHR-UNIVERSITÄT BOCHUM

Phase 1: Booking (NFC phone acts as RFID reader)

Two steps:

- 1. customer identification
- 2. obtaining a right (credential)

RUHR-UNIVERSITÄT BOCHUM

Booking 1/2 Customer Identification

- customer is identified, let's book s.th. !
- communication secured with TLS (assumption: TLS is secure ...)
- four steps:

- service information *I_{SReq}* (e.g., GPS position of phone)
- customer ID ID_C
- random nonce N_C
- time stamp *ts_{SReq}*

- service information *I_{SReq}* (e.g., GPS position of phone)
- customer ID ID_C
- random nonce N_C
- time stamp *ts_{SReq}*

$$\begin{split} & \texttt{h}_{\texttt{SReq}} := \texttt{hash}(\texttt{I}_{\texttt{SReq}} \mid\mid \texttt{ID}_{\texttt{C}} \mid\mid \texttt{N}_{\texttt{C}} \mid\mid \texttt{ts}_{\texttt{SReq}}) \\ & \texttt{t}_{\texttt{SReq}} := \texttt{sign}_{\texttt{sk}_{\texttt{C}}}(\texttt{h}_{\texttt{SReq}}) \\ & \texttt{p}_{\texttt{SReq}} := \texttt{encrypt}_{\texttt{pk}_{\texttt{SP}}}(\texttt{I}_{\texttt{SReq}} \mid\mid \texttt{N}_{\texttt{C}} \mid\mid \texttt{ts}_{\texttt{SReq}} \mid\mid \texttt{t}_{\texttt{SReq}}) \end{split}$$

- service information *I_{BReq}* (e.g., GPS position of car ...)
- unique service object information UI_{BReq} (e.g., car ID)
- modified nonce N_C '
- time stamp ts_{BReq}

Service Provider Server	Customer Smartphone		
	Service Request Booking Request Booking Confirmation Service Response		

- service information *I_{BReq}* (e.g., GPS position of car ...)
- unique service object information UI_{BReq} (e.g., car ID)
- modified nonce N_C
- time stamp *ts*_{BReq}

$$\begin{split} & \textbf{h}_{\text{BReq}} := \text{hash}(\textbf{I}_{\text{BReq}} \mid\mid \textbf{UI}_{\text{BReq}} \mid\mid \textbf{N}_{\text{C}}\textbf{'} \mid\mid \textbf{ts}_{\text{BReq}}) \\ & \textbf{t}_{\text{BReq}} := \text{sign}_{\textbf{sk}_{\text{SP}}}(\textbf{h}_{\text{BReq}}) \\ & \textbf{p}_{\text{BReq}} := \text{encrypt}_{\textbf{pk}_{\text{C}}}(\textbf{I}_{\text{BReq}} \mid\mid \textbf{UI}_{\text{BReq}} \mid\mid \textbf{N}_{\text{C}}\textbf{'} \mid\mid \textbf{ts}_{\text{BReq}} \mid\mid \textbf{t}_{\text{BReq}}) \end{split}$$

- service information I_{BReq}
- unique service object information UI_{BReq}
- (more) modified nonce N_C "
- time stamp ts_{BCon}

Service Provider Server	Customer Smartphone		
	Service Request Booking Request Booking Confirmation Service Response		

- service information I_{BReq}
- unique service object information UI_{BReq}
- (more) modified nonce N_C "
- time stamp *ts_{BCon}*

$$\begin{split} & \textbf{h}_{\text{BCon}} := \text{hash}(\textbf{I}_{\text{BReq}} \mid\mid \textbf{UI}_{\text{BReq}} \mid\mid \textbf{N}_{\text{C}}" \mid\mid \textbf{ts}_{\text{BCon}}) \\ & \textbf{t}_{\text{BCon}} := \text{sign}_{\textbf{sk}_{\text{C}}}(\textbf{h}_{\text{BCon}}) \\ & \textbf{p}_{\text{BCon}} := \text{encrypt}_{\textbf{pk}_{\text{SP}}}(\textbf{I}_{\text{BReq}} \mid\mid \textbf{UI}_{\text{BReq}} \mid\mid \textbf{N}_{\text{C}}" \mid\mid \textbf{ts}_{\text{BCon}} \mid\mid \textbf{t}_{\text{BCon}}) \end{split}$$

• Create **service credential** from:

information I_{SC} , (even more) modified nonce N_C ", unique service object information UI_{SC} , time stamp ts_{SC} , Authentication Key, and encrypted user rights credential

• Create **service credential** from:

information I_{SC} , (even more) modified nonce N_C ^{(''}, unique service object information UI_{SC} , time stamp ts_{SC} , Authentication Key, and encrypted User Rights Credential

$$\begin{split} & \textbf{h}_{\text{SC}} := \text{hash}(\text{Service Credential}) \\ & \textbf{t}_{\text{SC}} := \text{sign}_{\textbf{sk}_{\text{SP}}}(\textbf{h}_{\text{SC}}) \\ & \textbf{p}_{\text{SC}} := \text{encrypt}_{\textbf{pk}_{\text{C}}}(\text{Service Credential} \mid\mid \textbf{t}_{\text{SC}}) \end{split}$$

RUHR-UNIVERSITÄT BOCHUM

RUB

Booking 2/2 Obtaining a Right (Credential)

very easy!

RUB

Phase 2: Execute Booked Rights (NFC phone emulates Mifare DESfire)

- Authentication Key from service credential is used to secure wireless link (DESfire mutual authentication)
- Decrypt User Rights Credential with sk_{SO} and verify its signature with pk_{SP}

RUHR-UNIVERSITÄT BOCHUM

Homework:

Read our paper and find out how the Authentication Key is generated and updated in case of no Internet.

RUB

Secure Elements

In Theory: Several options

- Embedded Secure Element (eSE)
- SIM card issued by communication provider
- SE integrated in a (Micro) SD card

In Practice:

- slow (8-bit) and Java
- no access granted ☺

Implementation Obstacles and Security Issues

Software on Smartphone:

- no access to SE \rightarrow no secure storage
- program main CPU in Java (⊗ !!)
- RIM API doesn't support nPA elliptic curve (brainpoolP256r1)

nPA:

- No certificate for Terminal Authentication (TA)
- No external pinpad / secure nPA reader
- \rightarrow Trojan in smartphone OS poses a security threat

Run-Time of PACE

ſ			
	2		⊢
		-	

PACE Step / Time	Minimum	Maximum	Average
Communication buildup & MSE:Set AT	124 ms	408 ms	262.11 ms
Encrypt Nonce	68 ms	138 ms	105.17 ms
Map Nonce	1558 ms	1763 ms	1695.32 ms
Perform Key Agreement	1185 ms	1396 ms	1291.57 ms
Mutual Authentication	118 ms	189 ms	147.32 ms
Total PACE	3268 ms	3712 ms	3501.49 ms

Summary

- Concept for secure rights management with NFC
- Smartphone application for booking via TLS
- NFC phone as RFID reader realizes eID function of nPA (ECDHKE *in Java …*)
- NFC phone emulates Mifare DESfire card to open car
- some remaining security issues discussed

Thank you! Questions?

timo.kasper@rub.de

RUHR-UNIVERSITÄT BOCHUM

Chair for Embedded Security (Prof. Christof Paar)

www.emsec.rub.de

EXAMPLE R D S W A L D

Ingenieure für innovative Sicherheitslösungen

www.kasper-oswald.de

RUHR-UNIVERSITÄT BOCHUM

Security for eMobility: Project SecMobil

30 km Range

STATUS

180 km

escrypt

Embedded Security

DAIMLER

Associated Partners

32

RUB

- development of a secure energy sensor
- tamper-proof smart metering

• standardized security architecture for electric cars

 privacy and data security for end-users and suppliers

Introduction to Cryptography and Data Security

- Videos of 2 semesters
- all online:

www.crypto-textbook.com

A Textbook for Students and Practitioners

Christof Paar

Understanding

Cryptography