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What	
  is	
  RFID?	
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What	
  are	
  the	
  requirements?	
  
•  Analog	
  interface	
  
•  Data	
  transmission	
  protocol	
  
–  ISO14443A	
  
–  ISO15693	
  
– NFC	
  

•  Top-­‐level	
  applicaPon	
  
– AuthenPcaPon	
  
– Privacy	
  
– Cryptographic	
  primiPves	
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EllipPc	
  Curve	
  Cryptography	
  
•  Why?	
  
•  e.g.	
  for	
  privacy	
  preserving	
  protocols	
  

•  Standardized	
  (SECG,	
  NIST)	
  
•  For	
  best	
  interoperability	
  
•  Already	
  used	
  for	
  TLS,	
  IPSec,	
  and	
  SSH	
  

•  Implemented	
  ellipPc	
  curve	
  
•  sect163r1	
  (NIST	
  B-­‐163)	
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Algorithms	
  

•  Le^-­‐to-­‐right	
  Montgomery	
  Ladder	
  by	
  	
  
López	
  and	
  Dahab	
  
	
  

•  Randomized	
  ProjecPve	
  Coordinates	
  
	
  

•  Use	
  the	
  Private	
  Scalar	
  only	
  Once	
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Architecture	
  

Memory	
  

Adder	
  Squarer	
  MulPplier	
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Measurement	
  Setup	
  
•  ASIC	
  
– Placed	
  and	
  Routed	
  Design	
  
– VCD-­‐based	
  Toggle	
  Count	
  	
  

•  FPGA	
  
– SASEBO	
  
– ResoluPon	
  Based	
  on	
  Input	
  Buffer	
  of	
  Oscilloscope	
  
– Exact	
  Clock	
  Source	
  Required	
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Measurement	
  Methodology	
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Assuring	
  Side-­‐Channel	
  Resistance	
  	
  

K162=1	
  

K161=0	
  

K160=0	
  

K159=1	
  

K158=1	
  

K157=0	
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Assuring	
  Side-­‐Channel	
  Resistance	
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Finite	
  Field	
  MulPplier	
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  First	
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Leakage	
  of	
  Digit-­‐Serial	
  MulPplier	
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CorrelaPon	
  of	
  ConsecuPve	
  Rounds	
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CorrelaPon	
  of	
  ConsecuPve	
  Rounds	
  

Noise margin
Noise margin

Noise margin

Noise margin

Noise marginNoise margin
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Algorithm 1 López and Dahab round operations with key bits (0-0-1).

Ensure: P 0
1  P1 + P2.

Ensure: P 0
2  2 · P2.

Point Addition
1: X1  X1 · Z2

2: Z1  Z1 ·X2

3: T1  X1 · Z1

4: Z1  Z1 +X1

5: Z1  Z1 · Z1

6: X1  x · Z1

7: X1  X1 + T1

Point Doubling
8: X2  X2 ·X2

9: Z2  Z2 · Z2

10: T1  Z2 · c
11: Z2  Z2 ·X2

12: T1  T1 · T1

13: X2  X2 ·X2

14: X2  X2 + T1

Ensure: P 0
1  P1 + P2.

Ensure: P 0
2  2 · P2.

Point Addition
1: X1  X1 · Z2

2: Z1  Z1 ·X2

3: T1  X1 · Z1

4: Z1  Z1 +X1

5: Z1  Z1 · Z1

6: X1  x · Z1

7: X1  X1 + T1

Point Doubling
8: X2  X2 ·X2

9: Z2  Z2 · Z2

10: T1  Z2 · c
11: Z2  Z2 ·X2

12: T1  T1 · T1

13: X2  X2 ·X2

14: X2  X2 + T1

Ensure: P 0
2  P2 + P1.

Ensure: P 0
1  2 · P1.

Point Addition
1: X2  X2 · Z1

2: Z2  Z2 ·X1

3: T1  X2 · Z2

4: Z2  Z2 +X2

5: Z2  Z2 · Z2

6: X2  x · Z2

7: X2  X2 + T1

Point Doubling
8: X1  X1 ·X1

9: Z1  Z1 · Z1

10: T1  Z1 · c
11: Z1  Z1 ·X1

12: T1  T1 · T1

13: X1  X1 ·X1

14: X1  X1 + T1

CorrelaPon	
  of	
  ConsecuPve	
  Rounds	
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CorrelaPon	
  of	
  ConsecuPve	
  Rounds	
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Revealing	
  Intermediate	
  Operands	
  

MSB	
  First	
  Mul$plier	
  

OpBi
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Revealing	
  Intermediate	
  Operands	
  

0 1 2 3 4 5 6 7
0 0 1 1 2 1 2 2 3
1 1 0 2 1 2 1 3 2
2 1 2 0 1 2 3 1 2
3 2 1 1 0 3 2 2 1
4 1 2 2 3 0 1 1 2
5 2 1 3 2 1 0 2 1
6 2 3 1 2 1 2 0 1
7 3 2 2 1 2 1 1 0

0 1 2 3 4 5 6 7
0 0 1 1 2 1 2 2 3
1 1 0 2 1 2 1 3 2
2 1 2 0 1 2 3 1 2
3 2 1 1 0 3 2 2 1
4 1 2 2 3 0 1 1 2
5 2 1 3 2 1 0 2 1
6 2 3 1 2 1 2 0 1
7 3 2 2 1 2 1 1 0
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Revealing	
  Intermediate	
  Operands	
  

12 Erich Wenger, Thomas Korak, and Mario Kirschbaum

Table 1. Average number of solutions for OpB assuming hd(OpB) is given.

Parameter N = 163 N = 256

d = 1 21 = 21 21 = 21

d = 2 2220.5⇥81 = 242.5 2220.5⇥127 = 265.5

d = 3 2330.75⇥54 = 267.2 2330.75⇥85 = 2104

d = 4 2440.5⇥4060.375⇥40 = 282.8 2440.5⇥6360.375⇥63 = 2128.1

Identifying the Intermediates. At this point, the attacker wants to identify
the intermediate values processed during the field multiplications by using the
given power traces. The identification of the operand(s) OpBi has to be done in
two phases:

At first, the leaking Hamming distances in the power trace have to be classi-
fied. By overlaying all |k| rounds, as it has been done in Figure 6, it is possible
to distinguish clusters of di↵erent Hamming distances. This classification can
for instance be performed using a k-means algorithm [16]. We performed this
classification on our simulated power traces and were able to detect the correct
Hamming distances with the following error rates: 0.33% for d = 1 without and
with glitches, 4.13% for d = 2 without glitches, 9.31% for d = 2 with glitches,
4.96% for d = 4 without glitches and 9.04% for d = 4 with glitches.

During the second phase, we used the Hamming distances hd(OpB) to iter-
ate through all possible solutions. Several possible solutions for OpB result in
the same hd(OpB). Equation 4 gives an average number of possible solutions
Nsolutions in dependence of N and d, when hd(OpB) is given. #(hd = h) is the
number of possible solutions for a fixed Hamming distance h and p(hd = h) is the
probability of the Hamming distance h. Since it is necessary to guess OpBMSB ,
2d is a multiplicand factor within the equation. Table 1 gives exemplary numbers
for N = 163, N = 256, and d = 1...4.

Nsolutions = 2d ·
 

dY

h=0

#(hd = h)p(hd=h)

!dN
d e�1

(4)

The following short example should clarify the problematic: When d = 2,
hd(OpBi, OpBi+1

) is either 0, 1, or 2. Whereas hd = 0 and hd = 2 uniquely map
OpBi to a single OpBi+1

, hd = 1 does not. Let us assume OpBi = 00b. Then
there are two solutions hd(00b, 01b) = hd(00b, 10b) = 1. With our power model3,
those two solutions cannot be distinguished in the power trace. In average there
are 242.5 possible solutions (cf. Table 1) for d = 2 and N = 163. Using brute-
force, breaking 242.5 is practicable.

Other exemplary cases such as d > 2 orN = 256 are theoretically possible but
impractical. However Table 1 depicts an average case. In practice the number
of possibilities Nsolutions for a certain OpB depends on hw(OpB). Hence, it
is clever to only attack OpB with a small search space. An approximation of
the necessary runtime can be performed in constant time. Furthermore we are

3 Note that this might be possible using more advanced power models.
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Revealing	
  Intermediate	
  Operands	
  
•  Correlate	
  with	
  an	
  ArithmePc	
  CombinaPon	
  of	
  
Intermediates	
  

•  ANack	
  Several	
  Intermediates	
  Simultaneously	
  	
  
	
  

•  Find	
  the	
  x-­‐Coordinate	
  	
  
	
  

•  Undo	
  the	
  ProjecPve	
  Coordinate	
  
RandomizaPon	
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confident that by investigating the di↵erent arrival times of single bits in OpBi

and by using more detailed timing information, our leakage model can be refined.
For many practical implementations without point randomization, finding

those intermediate values would be su�cient. However, in the context of this
paper (with point randomization) finding the intermediate values is only a prepa-
rational step for the following attack scenarios.

8.1 Correlate with an Arithmetic Combination of Intermediates.

In Section 7, a direct correlation of the power trace on two consecutive rounds
was performed. By changing the order of the operands of the multiplication this
attack can be prevented. In many cases there is still a link between consecu-
tive rounds when the result of an arithmetical combination of several operands
OpB1, OpB2, . . . in round i is used as operand in round i+1. If the arithmetical
combination f(·) as well as a set of operands OpB1, OpB2, . . . for round i is
known, a set of used operands F = f(OpB1, OpB2, . . .) for round i + 1 can be
calculated. Feeding f(·) with every possible combination of OpB1, OpB2, . . . and
performing the correlation d(hd(F ), Ri�1

) the size of the possible key candidates
can be decreased. The complexity of this attack highly depends on the number
of operands NOpB used as arguments for f(·) as well as on d. NOpB as well as d
have an influence on the number of possible results for F . If e.g. f(·) is a squaring
function (NOpB = 1) and d  2 the attack can be performed within acceptable
bounds. Furthermore it has to be considered that if some bits in F are wrong
there might still be a significant peak in the correlation plot, so there is no need
to find the exact value of F . This fact also decreases the attack complexity.

8.2 Attack Several Intermediates Simultaneously.

An enhancement of the previous scenario is to attack (OpB1, OpB2, . . .) as well
as F = f(OpB1, OpB2, . . .) simultaneously. Let us assume the Hamming dis-
tances of F and OpB1, OpB2, . . . are known, so only a limited number of combi-
nations for F and OpB1, OpB2, . . . fulfill the equation F = f(OpB1, OpB2, . . .).
Although we did not test it, we are confident that by attacking di↵erent inter-
mediates simultaneously the search space Nsolutions can be reduced by a certain
degree.

8.3 Find the x-Coordinate.

If an attacker can reveal the exact values for Xi (projective X coordinate in
round i) and Zi, she can calculate the x-coordinate of the currently processed
point. Even if Xi and Zi have been randomized and multiplied with a random
� this attack works. In the case of Xr = Xi · � and Zr = Zi · �,

xi = Xr · Z�1

r = (�Xi) · (�Zi)
�1 = X · Z�1 (5)

can be recovered. Assuming a scalar multiplication Q = k ⇥ P is performed,
small multiples of P can be precalculated and compared with xi which is revealed
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can be decreased. The complexity of this attack highly depends on the number
of operands NOpB used as arguments for f(·) as well as on d. NOpB as well as d
have an influence on the number of possible results for F . If e.g. f(·) is a squaring
function (NOpB = 1) and d  2 the attack can be performed within acceptable
bounds. Furthermore it has to be considered that if some bits in F are wrong
there might still be a significant peak in the correlation plot, so there is no need
to find the exact value of F . This fact also decreases the attack complexity.

8.2 Attack Several Intermediates Simultaneously.

An enhancement of the previous scenario is to attack (OpB1, OpB2, . . .) as well
as F = f(OpB1, OpB2, . . .) simultaneously. Let us assume the Hamming dis-
tances of F and OpB1, OpB2, . . . are known, so only a limited number of combi-
nations for F and OpB1, OpB2, . . . fulfill the equation F = f(OpB1, OpB2, . . .).
Although we did not test it, we are confident that by attacking di↵erent inter-
mediates simultaneously the search space Nsolutions can be reduced by a certain
degree.

8.3 Find the x-Coordinate.

If an attacker can reveal the exact values for Xi (projective X coordinate in
round i) and Zi, she can calculate the x-coordinate of the currently processed
point. Even if Xi and Zi have been randomized and multiplied with a random
� this attack works. In the case of Xr = Xi · � and Zr = Zi · �,

xi = Xr · Z�1

r = (�Xi) · (�Zi)
�1 = X · Z�1 (5)

can be recovered. Assuming a scalar multiplication Q = k ⇥ P is performed,
small multiples of P can be precalculated and compared with xi which is revealed
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in each round. Thus step by step all bits of k can be revealed. Even if there is an
error in round i and xi cannot be matched, xi+1

can be used to identify more
key bits at once.

8.4 Undo the Projective Coordinate Randomization.

In order to perform a projective coordinate randomization, each coordinate is
multiplied with a random number �. For that operation usually the same finite-
field multiplier is used as the finite-field multiplier used during a point multipli-
cation. So in the case of Xr = X · � and � is used as OpB, the randomization
factor can be found. By knowing � many attack scenarios on a device doing a
point multiplication become feasible.

9 Conclusion

Nowadays the community knows that no implementation is believed to be secure
as long as it has not been attacked and investigated in su�cient detail. In this
paper, we attacked a protected ECC implementation by using only a single
power trace. So even the popularly used ECDSA and the Di�e-Hellman key
exchange algorithms are vulnerable. The corollary one should take away from
this paper is that a designer must not only consider a simple di↵erence-of-means
attack but also be aware of more advanced and unexpected attack scenarios
such as the here shown custom correlation attack or the attack on all processed
intermediate values. But how should any designer be aware of future, currently
unknown attacks?
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Conclusion	
  
•  InvesPgated	
  RFID-­‐suitable	
  ECC	
  Hardware	
  with	
  
– Montgomery	
  Ladder	
  
– Randomized	
  ProjecPve	
  Coordinates	
  
– Ephemeral	
  Scalars	
  

•  Several	
  PracPcal	
  ANack	
  Scenarios	
  were	
  
InvesPgated	
  

•  We	
  do	
  not	
  recommend	
  to	
  use	
  a	
  bit-­‐serial	
  
mul$plier	
  (d=1)	
  for	
  security-­‐cri$cal	
  
applica$ons!	
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