

Analyzing Side-Channel Leakage of RFID-Suitable Lightweight ECC Hardware

Erich.Wenger@iaik.tugraz.at Thomas.Korak@iaik.tugraz.at

Mario.Kirschbaum@iaik.tugraz.at

Outline

- RFID?
- ECC Hardware (DUT)
- Power Analysis Attacks
 - Difference-of-Means
 - Correlation Attack
 - Revealing Intermediates
- Conclusion

What is RFID?

What are the requirements?

- Analog interface
- Data transmission protocol
 - ISO14443A
 - ISO15693
 - -NFC
- Top-level application
 - Authentication
 - Privacy
 - Cryptographic primitives

Elliptic Curve Cryptography

- Why?
 - e.g. for privacy preserving protocols
- Standardized (SECG, NIST)
 - For best interoperability
 - Already used for TLS, IPSec, and SSH
- Implemented elliptic curve
 - sect163r1 (NIST B-163)

Algorithms

- Left-to-right Montgomery Ladder by López and Dahab
- Randomized Projective Coordinates
- Use the Private Scalar only Once

Measurement Setup

- ASIC
 - Placed and Routed Design
 - VCD-based Toggle Count
- FPGA
 - SASEBO
 - Resolution Based on Input Buffer of Oscilloscope
 - Exact Clock Source Required

Measurement Methodology

Assuring Side-Channel Resistance

Assuring Side-Channel Resistance

Finite Field Multiplier

LSB First Multiplier

MSB First Multiplier

Leakage of Digit-Serial Multiplier

Graz University of Technology/Wenger, Korak, Kirschbaum

Algorithm 1 López and Dahab round operations with key bits $(0-0-1)$.		
Ensure: $P'_1 \leftarrow P_1 + P_2$.	Ensure: $P'_1 \leftarrow P_1 + P_2$.	Ensure: $P'_2 \leftarrow P_2 + P_1$.
Ensure: $P'_2 \leftarrow 2 \cdot P_2$.	Ensure: $P'_2 \leftarrow 2 \cdot P_2$.	Ensure: $P'_1 \leftarrow 2 \cdot P_1$.
Point Addition	Point Addition	Point Addition
1: $X_1 \leftarrow X_1 \cdot Z_2$	1: $X_1 \leftarrow X_1 \cdot Z_2$	1: $X_2 \leftarrow X_2 \cdot Z_1$
$2: \mathbb{Z}_1 \leftarrow \mathbb{Z}_1 \cdot X_2$	$2: \mathbb{Z}_1 \leftarrow \mathbb{Z}_1 \cdot X_2$	$2: \ Z_2 \leftarrow Z_2 \cdot X_1$
3: $\overline{T}_1 \leftarrow X_1 \cdot \overline{Z}_1$	3: $\overline{T}_1 \leftarrow \overline{X}_1 \cdot Z_1$	3: $T_1 \leftarrow X_2 \cdot Z_2$
$4: Z_1 \leftarrow Z_1 + X_1$	$4: Z_1 \leftarrow Z_1 + X_1$	$4: Z_2 \leftarrow Z_2 + X_2$
$5: Z_1 \leftarrow Z_1 \cdot Z_1$	5: $Z_1 \leftarrow Z_1 \cdot Z_1$	5: $Z_2 \leftarrow Z_2 \cdot Z_2$
6: $X_1 \leftarrow x \cdot Z_1$	6: $X_1 \leftarrow x \cdot Z_1$	6: $X_2 \leftarrow x \cdot Z_2$
$7: X_1 \leftarrow X_1 + T_1$	$7: X_1 \leftarrow X_1 + T_1$	$7: X_2 \leftarrow X_2 + T_1$
Point Doubling	Point Doubling	Point Doubling
8: $X_2 \leftarrow X_2 \cdot X_2$	8: $X_2 \leftarrow X_2 \cdot X_2$	8: $X_1 \leftarrow X_1 \cdot X_1$
9: $Z_2 \leftarrow Z_2 \cdot Z_2$	9: $Z_2 \leftarrow Z_2 \cdot Z_2$	9: $Z_1 \leftarrow Z_1 \cdot Z_1$
10: $T_1 \leftarrow Z_2$ c	10: $T_1 \leftarrow Z_2$ (c)	10: $T_1 \leftarrow Z_1$ (c)
11: $Z_2 \leftarrow Z_2 \cdot X_2$	11: $Z_2 \leftarrow Z_2 \cdot X_2$	11: $Z_1 \leftarrow Z_1 \cdot \overline{X}_1$
12: $T_1 \leftarrow T_1 \cdot T_1$	12: $T_1 \leftarrow T_1 \cdot T_1$	12: $T_1 \leftarrow T_1 \cdot T_1$
13: $X_2 \leftarrow X_2 \cdot X_2$	13: $X_2 \leftarrow X_2 \cdot X_2$	13: $X_1 \leftarrow X_1 \cdot X_1$
14: $X_2 \leftarrow X_2 + T_1$	14: $X_2 \leftarrow X_2 + T_1$	14: $X_1 \leftarrow X_1 + T_1$

Graz University of Technology/Wenger, Korak, Kirschbaum

SEnSE •

MSB First Multiplier

Graz University of Technology/Wenger, Korak, Kirschbaum

SEnSE •

$$N_{solutions} = 2^d \cdot \left(\prod_{h=0}^d \# (hd = h)^{p(hd = h)}\right)^{\lceil \frac{N}{d} \rceil - 1}$$

Parameter	$\mathbf{N} = 163$	$\mathbf{N} = 256$
d = 1	$2^1 = 2^1$	$2^1 = 2^1$
d = 2	$2^2 2^{0.5 \times 81} = 2^{42.5}$	$2^2 2^{0.5 \times 127} = 2^{65.5}$
d = 3	$2^3 3^{0.75 \times 54} = 2^{67.2}$	$2^3 3^{0.75 \times 85} = 2^{104}$
d = 4	$2^4 4^{0.5 \times 40} 6^{0.375 \times 40} = 2^{82.8}$	$2^4 4^{0.5 \times 63} 6^{0.375 \times 63} = 2^{128.1}$

- Correlate with an Arithmetic Combination of Intermediates $F = f(OpB^1, OpB^2, ...)$
- Attack Several Intermediates Simultaneously $F = f(OpB^1, OpB^2, ...)$
- Find the x-Coordinate $x_i = X_r \cdot Z_r^{-1} = (\lambda X_i) \cdot (\lambda Z_i)^{-1} = X \cdot Z^{-1}$
- Undo the Projective Coordinate Randomization $X_r = X \cdot \lambda$

Conclusion

- Investigated RFID-suitable ECC Hardware with
 - Montgomery Ladder
 - Randomized Projective Coordinates
 - Ephemeral Scalars
- Several Practical Attack Scenarios were Investigated
- We do not recommend to use a bit-serial multiplier (d=1) for security-critical applications!

Thank you...