Energy-Architecture Tuning for ECC-based RFID tags

Deepak Mane Patrick Schaumont

Bradley Department of Electrical and Computer Engineering Virginia Tech Blacksburg, VA

11 July 2013

- 2 Energy Consumption in CMOS
- 3 Energy Measurement Methodology
- 4 Results and Analysis

Objectives of this research

Challenges of ECC on RFID

- Algorithmic complexity in layers
- Complex algorithm-architecture interaction
- Constraints in energy budget and execution time
- Objectives of this research
 - Measure how much encryption you get for 1 Joule?
 - Quantify the impact of security level (on energy)
 - Quantify the impact of architecture features (on energy)

Why care about energy?

- Traditional backscatter RFID is power constrained; but many alternatives possible
- RF is just one form of energy harvesting (besides solar, vibration, thermal, ..)
- Challenge: System-level dimensioning of energy harvester, energy store, algorithm

Example: is this stragegy optimal?

Algorithm 1. Montgomery powering ladder scalar multiplication

Input: $P \in E(\mathbb{F}_q)$ and $k = (k_{n-1}, \ldots, k_0)_2 \in \mathbb{N}$, with $k_{n-1} \neq 0$ Output: Q = kP

1:
$$(X_0, Z_0) \leftarrow \mathbf{P}; (X_1, Z_1) \leftarrow 2\mathbf{P}$$

2: $X_0 \leftarrow X_0 \times Z_1; X_1 \leftarrow X_1 \times Z_0; Z \leftarrow Z_0 \times Z_1;$
3: for $i = n - 2$ downto 0 do
4: $R_2 \leftarrow Z^2, R_3 \leftarrow R_2 + R_2, R_3 \leftarrow R_3 + R_2, R_1 \leftarrow Z \times R_2, R_2 \leftarrow 4b \times R_1,$
5: $R_1 \leftarrow X_{1-k_i}^2, R_5 \leftarrow R_1 + R_3, R_4 \leftarrow R_5^2, R_1 \leftarrow R_1 - R_3, R_5 \leftarrow X_{1-k_i} \times R_1,$
6: $R_5 \leftarrow R_5 + R_5, R_5 \leftarrow R_5 + R_5, R_5 \leftarrow R_5 + R_2, R_1 \leftarrow R_1 - R_3, R_3 \leftarrow X_{k_i}^2,$
7: $R_1 \leftarrow R_1 + R_3, X_{k_i} \leftarrow X_{k_i} - X_{1-k_i}, X_{1-k_i} \leftarrow X_{1-k_i} + X_{1-k_i}, R_3 \leftarrow X_{1-k_i} \times R_2,$
8: $R_4 \leftarrow R_4 - R_3, R_3 \leftarrow X_{k_i}^2, R_1 \leftarrow R_1 - R_3, X_{k_i} \leftarrow X_{k_i} + X_{1-k_i},$
9: $X_{1-k_i} \leftarrow X_{k_i} \times R_1, X_{1-k_i} \leftarrow X_{1-k_i} + R_2, R_2 \leftarrow Z \times R_3, Z \leftarrow x_{\mathbf{P}} \times R_2,$
10: $X_{1-k_i} \leftarrow X_{1-k_i} - Z, X_{k_i} \leftarrow R_5 \times X_{1-k_i}, X_{1-k_i} \leftarrow R_3 \times R_4, Z \leftarrow R_2 \times R_5.$
11: test-power_supply().

13: return $Q = (X_0, Z)$.

[Pendl et al, RFIDSec 2011]

Main conclusions

Energy Profile for ECDSA secp160r1 and nistp256 on TI MSP430F5438A

- 2 Energy Consumption in CMOS
- 3 Energy Measurement Methodology
- 4 Results and Analysis

Energy Consumption in CMOS

Energy consumed in CMOS

$E_{algorithm} = n.[lpha.C.V^2 + K.V.T_{clk}]$			
with	n	Cycle budget of algorithm	
	V	Voltage Supply	
	T _{clk}	Clock Period	
	C and K	Technology Constants	

Observation

- Energy has a dynamic and a static component
- Static Energy decreases when *T_{clk}* decreases Dynamic Energy is independent of *T_{clk}*
- Static Power is independent of *T_{clk}* Dynamic Power increases when *T_{clk}* decreases

Energy Consumption in CMOS

- 2 Energy Consumption in CMOS
- 3 Energy Measurement Methodology
- 4 Results and Analysis

Infrastructure

OpenADC

- C. Flynn, http://www.newae.com/tiki-index.php?page=OpenADC
- Low-cost 105MHz 10-bit ADC (\$140 USD); attaches to FPGA board (\$90 USD)
- Python postprocessing on laptop computes energy, handles data formatting
- We added trigger-controlled, real-time integration in FPGA

FPGA Integrator

LX9 FPGA

Test Software Generation

Using RELIC 0.3.3 with easy and msp-asm backend
msp-gcc 4.6.3

- 2 Energy Consumption in CMOS
- 3 Energy Measurement Methodology
- 4 Results and Analysis

Performance

Operation	secp160r1	
	w/o hardware	with hardware
	multiplier	multiplier
KeyGen	19,343,970	1,796,499
Sign	19,141,737	2,372,103
Verify	57,621,281	5,748,345
Related Efforts		
secp160 C [Wenger 11]	16,985,654	
secp160 ASM [Wenger 11]	8,779,931	
secp160 dsPIC [Wenger 11]		1,239,281
secp160 C [Gouvea 12]	2,520,000	
secp160 HWM [Gouvea 12]		1,744,000
P192 HWM [Hutter 12]		10,289,883

Footprint

	secp160r1		
	w/o hardware	with hardware	
	multiplier	multiplier	
Flash Bytes	27,134	28,168	
RAM Bytes	1,074	1,074	

secp160r1 ECDSA signing, using hardware multiplier

secp160r1 ECDSA signing, using hardware multiplier

Dynamic Energy Consumption

Arch Tuning for Energy-constrained System

Arch Tuning for Throughput-constrained System

secp160r1 and nistp256 ECDSA signing

nistp256, HWM

nistp256, no HWM

secp160r1 and nistp256 ECDSA signing

Conclusions

- Ignoring overhead, faster & uninterrupted ECC execution is better
- Most significant impact comes from architecture specialization
- For untethered systems design, energy analysis is vital
- Future work, unsolved issues
 - Better architecture exploration, microcontroller power-modes
 - Need to include (RF) communication overhead